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We propose a symbolic-numerical method for the stability analysis of
differance initial-value problems approximating initial-value problems
far the systems of partial differential equations of hyperbolic or
parabotic type. The basis of the method is constituted by the Fourier
method. It is proposed to use the catastrophe theory for an analysis of
the manifold of characteristic equation zeros. This equation is derived
automatically by symbolic computations which also enables us to
automatically generate some FORTRAN subroutines needed for the
analysis within the framework of the catastropbe theory. Examples of
the application of the developed method are presented. In particular,
the necessary stability condition has been obtained for the two-cycle
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1. INTRODUCTION

An important criterion affecting the choice of a difference
method for solving problems of mathematical physics and
computational fluid dynamics is the stability of a corre-
sponding numetical algorithm. One of the practical methods
for the stability investigation of numerical approximations
is the Fourier method [ 17]. However, the application of this
method (o the stability analyses of difference schemes (d.s.)
approximating the partial differential equations whose solu-
tions depend on spatial variables x,, .., x,, L= |, and the
time 1 often proves to be laborious or practicalty impossible
because ol the complexity of arising analytic computations,
The symbolic computations enable one to carry out all the
analytic computations which are characteristic of the
Fourier method on a computer. The first work in this direc-
tion was published by Wirth [2]. He used a system of
analytic computations (SAC) MACSYMA to develop a
program package FSTAB for the stability analysis of dif-
ference initial-value problems by the Fourier method. The
characteristic equation of the diflerence scheme was derived
in FSTAB symbolically and then the stability condition was
derived manually. However, in many practically important
cases the complexity of arising analytic expressions does not
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enable one (o obtain the desired stability conditions in an
analytic form. In this connection it is reasonable to combine
the symbolic computations with the numerical ones with the
purpose of a complete automation of the stability investiga-
tion of difference initial-value problems. Cne of the first
works in which this goal was achieved was [3]. In this work
the Routh—Hurwitz and Lienard-Chipart criteria [4] were
used for the analysis of the distribution of the characteristic
polynomial zeros in the complex plane. The left-hand sides
of the inequalities obtained from these criteria were derived
symbolically on a computer, and then a FORTRAN sub-
routine was generated automatically for the subsequent
numerical computation of the values of the left-hand sides of
the above inequalities. The coordinates of points of the
stability region boundary were then computed numericailly
to a given accuracy by solving an optimization problem (see
also [5,6]). The Soviet SAC REFAL was used in [3, 5, 6]
for the symbolic computations. In {7] the SAC REDUCE
[8] was used for the symbolic computation of the Hurwitz
determinant inequalities equivalent to the von Neumann
stability criterion [!]. In {9] the SAC REDUCE was used
only for the symbolic computation of the characteristic
equation coefficients. The localization of the zeros of this
equation with respect to the unit disc was then performed
numerically with the aid of a modified Routh algorithm.
This modification of the Routh algorithm [47 was aimed at
the reduction of the roundofl errors accumutation by using
the machine arithmetic of stored orders [10] and the
balancing of certain 2 x 2 matrices. This modified atgorithm
enables one to determine the stability regions of difference
schemes for complex real-life problems [6].

The symbolic computations were also used for the
stability analyses of difference initial- and boundary-value
problems. The pioneering result in this direction was
the program package IBSTAB [11-t3]. This program
implements an algorithm for automatic stability investiga-
tion according to the theory of Gustafsson, Kreiss, and
Sundstrom [14]. The symbolic-numeric code SPECTR
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using the SAC REDUCE and the FORTRAN language was
developed by Mazepa [15-17] also for the automatic
stability analysis of difference initial- and boundary-value
problems. The algorithm implemented in the program
SPECTR mainly follows the theoretical results of Kreiss
['18,14]. The practical application of these results is
difficult because it leads to a complex algebraic problem
on finding all zeros z, |z| =1, of a system of polynomial
equations. In this connection only relatively simple model
difference initial- and boundary-value problems were
considered until now with the aid of the programs IBSTAB
and SPECTR.

The amount of numerical computations required by the
algorithms of (3, 5-7, 9] becomes significant when these
algorithms are applied for the stability investigations of dif-
ference initial-value problems approximating, for example,
the initial-value problems for two- or three-dimensional
Euler or Navier-Stokes equations governing the com-
pressible fluid flows.

In this connection it is necessary to seek for other more
efficient ways of the symbolic-numerical realization of the
spectral stability analysis of difference schemes, By using the
Moebius transformation and computing the resultant
R(x, &) on the basis of the real and imaginary parts of the
coeflicients of a transformed characteristic equation the
problem of the stability analysis was reduced in [19, 20] to
a canonical problem of the catastrophe theory [217 on the
determination of a manifold of zeros of a family of functions
R. This method was used for the stability analyses of two
specific d.s., and the results were otained in [19, 20] by
analytic calculations by hand. However, in cases of com-
plicated d.s. even the derivation of an explicit expression for
the resultant, not to mention the analysis of the singularities
of its manifold of zeroes, is a complicated problem and in
practice it is impossible to find its solution in an anatytic
form by hand.

Previously a survey of the applications of the computer
algebra for the realization of analyses on the basis of the
catastrophe theory was given in [22]. The corresponding
developed programs were used in general relativity,
construction of smooth coordinate transformations, and
computation of oscillatory integrals. A project to build a
package “bifurcation and singularity theory” has been
presented in [23], Tt was proposed in [23] to use the
Groebner bases to determine the codimension of a
singularity.

A reasonable combination of symbolic and numerical
computations in a procedure for the stability analysis
enables one to substantially extend the scope of
applicability of the general approach proposed in [19], as
shown in the present paper. Examples of the stability
analyses are presented for a number of difference initial-
value problems. For the majority of considered ds. the
results on the stability have been obtained for the first time.

2, THEORETICAL BACKGROUND

In the domain G: lxj<o0,j=1,.,LO0<i<T, T<ow,
consider a system of hyperbolic or parabolic type,

U _

E——L(D) U, (21)

where U= {U,(x, 1), .., U,(x, 1)} is a vector function of x
and,mz1, x=(x,,.,x.),

L(D)= i A, D,

a=1
Da — DTngz .. ,Dil.,
D;=0d/ox;,

A, =lagl,

G+ - o =a,
j=1.,L,

Lj=1..m; a=lL.,p, p2l

a}; are constant quantities. Let us set the initial conditions:

U(x, 0) = U(x) (2.2)
for the system (2.1), where U(x) is a given vector function.
Approximate the system (2.1) by a (¢ + 1)th-level difference
scheme, g> 1. If ¢> 1, then the system of (g + 1)th-level
difference equations may be replaced with the aid of intro-
ducing new dependent variables by a system of two-level
equations [11],

C U+ C,U =0, (2.3)
where C, and C, are some lincar difference (generally
matrix) operators with constant coefficients which depend
on the time step ¢ and on the steps &,, ..., b, of a uniform
computing mesh along the axes x,,.. x,, respectively;
U"=U(x, nt), n=1, ..., [T/1]; the symbol [a] denotes the
integral part of the number a.

When investigating the stability of the difference schemes
(2.3) by the Fourier method the solutions of the form
U(x, 1) =Ugexp{i(kx —wt)} (2.4)
are substituted into the scheme, where w is the wave
frequency, U, is a constant vector, x = (x,,.., x.), L.=21,
k=(k,..,k.)is a real wave vector, i= ./ — L.
Upon substituting (2.4) into a scheme (2.3) one obtains
an amplification matrix G. Let

f(j-, K, g)ﬁ i aj(xv é) AN_J;: N=qm! (25)
J=0

be a characteristic polynomial of the matrix G, i=¢™",
K= (K, .., K ); the nondimensional complexes k,, ..., Ky,
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(M = 1) usually appear in the process of obtaining the
characteristic polynomial of the matrix & and depend on the
steps k,, .., k,, T (for example, the Courant number), on
dimensional quantities entering the coefficients of scheme
(2.3) and on nondimensional physical similarity criteria (for
example, the Reynolds number); &= (&,, .., &,), {,=kh,,
j=1,.., L. The quantities &, ..., £, will be called spectral
parameters in the following. Let 4, ..., 4, be the eigenvalues
of G. Then a von Neumann necessary stability condition has
the form [1]

A1 <1+ 0(1), , N.

j=1,.. (2.6)

In view of (24) the coefficients 4,(k, §) of the polynomial
(2.5) are periodic functions of the spectral parameters
&1y & with the periods T, ..., T, , respectively.

Consider in an L-dimensional Euclidean space E* of the
& points a parallelepiped

I {0<¢,<T,I=1,.., LY. (2.7)

Denote by E* an M -dimensional Euclidean space of the
points k = (k,, ..., k). Let the parallelepiped

Pk <k, <k, p=1,., M} (2.8)

max

be given in E*, where k7", k7~ are given quantities and it
is assumed that the stability domain D is to be determined
in P. Let us make as in [20] the Moebius transformation
A= (w+1)/(w—1) in the polynomial (2.5). Introduce the
notation

glw, K, &Y= (w— 1" f((w+ D)/(w—1), % 8). (29)

Then the condition Re w; <0, j=1, .., N, corresponds to
the condition |4,] <1, j=1, .., N, where w, are the zeroes of
the polynomial g(w, k, §). On the boundary I” of the domain
D the polynomial (2.9) should have at least one purely
imaginary zero, Let us set w= jg and consider the polyno-
mial

#(o, x, &)= glio, x, §). (2.10)

As was shown in [19,20], on the boundary I" the
resultant R(k, &) determined by the polynomials Re ¢ and
Im ¢ as

Rix, £)=res(Re ¢, Im ¢) {2.11)
should vanish. As is known, the resultant of the polynomials
age"+a,6" "+ .- +a,and boa" + b6+ - + b, is
a determinant of the form

a, a, oo, 0
0 ay, a4 a, 0O
. ni TOWS
R 0 0 a, a,
by - b, 0
b, b, 0
n TOWS
0 0 b5, b,

Thus the probiem on the determination of the boundary I
may be considered as a problem on studying the zeroes of
the equation

R(x, &)=0, (2.12)

where the family of functions R depends on M variables
Kyy..,Ky and on L parameters &, .., ¢,. Just these
problems are solved in the catastrophe theory.

We propose the following procedure to determine the
solutions of Eq.(2.12). Let (K, &y) be some solution of
(2.12), where koel. Set k=xk,+u and introduce the
notation

P(u, &)= R(x, +u, E). (2.13)

‘We shall consider @ as a family of functions of one variable
u,, depending on M — 1 + L parameters:

(uls vy uiofls uf0+l! 1y uM: fls [ é[_) = (u’a g)'

Consider the derivatives

5I¢/a”i|u=u,f=;,...‘m,r=1,2._.. vEell (2.14)

in order to determine the inner variable u;,.
Let /=k be the last order of a derivative at which at least
one derivative (2.14) is different from zero, that is,

F*Pjout |y _gzmr, %0,

{2.15)
s=1,2,..,5; S=1, YEell
Then it is possible to take for w, any of the coordinates u,
and to consider & as an (L — 1 + M)-dimensional unfolding
of a k-determined function F(x;0) [21], where

X=u

Fx:u, §)=P(u,§), x=u, (2.16)

It follows from the catastrophe theory [21] that there exists
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such a smooth transform x = X(#; w’, &) (it is even analyti-
cal, since the resultant R is an analytic function [24]) that

Flx(ou, &), &)

=454 b, S0, E) T 4 -+ h(uLE) (217)
{at even k the sign of +* is uniquely determined by the sign
of the derivative (2.15) for u,)). Note that a family F such
that F= dF/dx may be found to correspond to the family F.
Therefore, in accordance with the classical catastrophe
theory, we shall say that the family F(x, w’, &) (2.17) has a
singularity of the type A, [24,25]. Since the resultant
R(x, £) is a polynomial of a finite degree N in the variables
K;, @(u, £)in (2.16) has the form

N

B(w, §)= ) 2,(8)w, (2.18)
p=0
where p=(p,, .., P,,) 15 a multiindex and u? = uf' .. -ufy.
Let us set
X(r;u', €)=} c(u',E)r (2.19)

s=1

As was shown in [ 24], the series {2.19) has a nonzero radius
of convergence.

Substituting the expressions (2.16), {2.18), (2.19) into
Eq. (2.17) and equaliing the terms having the same degrees
in ¢, we obtain a recurrence equation system which uniquely
determines the functions c,(u’, &) and, consequently, the
function X(¢;w’, &).

Denote by z,(w', §), i =1, ..., k, the solutions of

T by (W, E) T 4 -+ by(u, E)=0. (2.20)

Then the set of smooth functions u}/' = X{(z,(w’, §); o', £)
gives a complete description of a manifold of the solutions
of Eq.(2.12}) in some neighborhood of the initial point
(ky. Ep) (in the language of the catastrophe theory the func-
tions u{!)(w’, &) describe the manifold of a catastrophe of the
type A, ). The boundary I of the stability domain of a dif-
ference scheme is an envelope of the family of the solutions
of Eq. {2.12) with the parameters § of the family. Therefore,
the values of the parameters &,=¢:"Nu') (I=1, .., k) at
which the functions u,=ul(w, ")) (I=1,.,k)
describe the boundary [ are determined by the equations of
the form

SF(uI(w, E);w, £)/0¢,=0, i=1,.,L (2.21)
The condition (2.21) is necessary, but it is not sufficient to
ensure that the vajues of the parameters ¢, correspond to the
boundary I". Therefore, in the numerical realization of the

proposed algorithm the condition (2.21) should be com-
pleted by some refinement procedure (see steps 6 and 7 in
the next section). Thus the functions u, = ul(u’, §"(u’))
describe the boundary I" of the d.s. stability domain in some
neighborhood of the point x,. Taking some value u’ =ug
which belongs to this neighborhood, we can take the point
Ko+ uy’ (= (u'(ug), up)} as an initial point and repeat
the overall procedure. As a result of this we obtain one more
piece of the boundary I'. Sequential repetition of this pro-
cess will yicld a description of the overall boundary 7. An
essential merit of the proposed method is that it gives a
correct description of all the singularities of a d.s. stability
domain boundary.

3. AUTOMATIC GENERATION OF
FORTRAN SUBROUTINES

On the basis of the above presented method we have
developed a symbolic-numerical algorithm for studying the
d.s. stability at 1 < L. €2, M =2. Since the stability domain
of a difference scheme with M =2 is located in the (x,, ;)
plane, the boundary I of the stability domain may have the
singularities only at some points of this plane. Therefore,
almost all the boundary is a regular curve and at the first
stage one can restrict oneself to a consideration of the trans-
form {2.17) with £ = 1. In this case the family @ (2.18} has
the form

Pluy, 1z, ¢4, 62) = R(K?’ K{Z)’ &1, &)

N i o
+ 2 (Z “:—;,j(“l('})[_"r”jz)

J=1 Ni=

=t+b, {3.1)

where b = const.
As it follows from the foregoing section, the first step of
the determination of the I” boundary is the determination of
an initial point (%, §y). We used a FORTRAN subroutine
ROUTH [9] for finding a point x5 € [ [n its turn, ROUTH
calls a subroutine COEF which enables us to compute the
values of the coefficients of the polynomial (2.9) at a given
point (x, &} The subroutine COEF was automatically
generated as in [ 77 by means of the REDUCE package [8],
departing from a specific form of a difference scheme, The
subroutine ROUTH implements a variant of the Routh
algorithm for studying the Hurwitz property of a polyno-
mial; see a more detailed description in [9]. The module
RESULTANT available in the REDUCE library enables us
to calculate the resultant (2.11) in an analytical form. The
overall length of the expression for the resultant obtained
on a computer usually can be substantially reduced by

applying the trigonometric substitutions
cos® &, =1 —sin’ &,

j=1,.., L.
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The FORTRAN function RESULT, the output of which is
the value of the resultant at a given point (x, &), was
automatically generated by means of the REDUCE system.
And, finally, REDUCE was used to determine the analytic
expressions for the coefficients a;_ ; ;in (3.1) and to generate
a FORTRAN subroutine CATAS at the output of which the
clements FF(i, j) of the two-dimensional array of numbers
FF were obtained which contained the numerical values of
the coefficients «, in (3.1) computed at a given point

(KOs éﬁ)'

4. ALGORITHM FOR THE NUMERICAL DETERMINA-
TIHON OF THE STABILITY REGION BOUNDARY

In the practical computations we used the inequalities

latiol = Ja¢/a”1fu=o_g=gu>8,

IO:OII = ia¢/6u2[u=0‘§=&>a

to check the conditions (2.15) at k =1 (e is a small positive
number, for example, ¢=10"°). The function u,(t; u,, &)
entering (3.1} was approximated by a finite truncation of the
series (2.19):

Wt €)= 3 efus, E) 1 (a1)

This formula was employed in the case when the coefficients
a4 and a,, entering (3.1) satisfied the relationship

(42)

lam('f?, ’Cg, Eoll = ‘“m(?‘:?, Kg, éa)l-

The computations for specific difference schemes showed
that at sufficiently small increments », one can take m =2 in
{4.1). Let us write down the necessary recurrence formulas
for the calculation of the values ¢4, c,, and & for the case
m = 2. Substituting the right-hand side of formula (4.1} into
(3.1) instead of «, and neglecting the terms of the order
O(t*), k = 3, we obtain the formulas for ¢, ¢,, and b,

ey =1/{ey3u3 + ayou3 + oy  uy + atyp),
€= = CH(ap1t3 + day ty + ), (4.3)

b= Ro+ ot + 2313 + oy 42 + oty
where we have introduced the notation
0 0 o 4]
R():R{K[: Kz; ]762)'

It follows from Eq. (2.20) that = —b. Thus, in the case
when the inequality (4.2} is satisfied the solution of

Eq. (2.12) in the neighborhood of a regular point (k,, &)
has the form

2

ulus £y, 80)= z ciluy, &5, ENL —Bluy, &4, éz)]i- {4.4)
i=1
In the case when the inequalities
lotor (KT, K3, &al > [oja(kY, k5, &o)! (4.5)

are satisfied at the point (kq, &y}, we set the increment u,
and seek the function u,(t; u,, &) as

"

u2([;u15 g): Z Ei(ulv E_;) ti-

i=1

(4.6)

In the case m =2 the formulas for &, &,, and b have the
form

= 3 2
¢y = 1/{otsy 0y + oz g + oty 1y + 2y ),

— Eopu] +ayp 4y + ), (4.7)

2=
b= R0+ a40u?+a30u';' + az()uf-“" (xl(}ul.

As a result we find the function u,(u,, &,, &,) in the form

2
uy(uy, &, E)= Y Euy, &y, E —Bluy, £, 6,)].  (4.8)
i=1

Note that the inequalities (4.2 ) and (4.5) determine the form
of the description of a piece of the stability region boundary
which is under consideration. As it follows from the
formulas (4.1) and (4.6), the boundary is described more
accurately, if |¢,) or |£;| are small. It may be seen from {(4.3)
and (4.7) that ¢; are inversely proportional to o, and &, are
inversely proportional to a,,. Therefore, in the case of the
satisfaction of the inequality (4.2} it is reasonable to use the
description {4.1), and in the case of the satisfaction of
the inequality (4.5} it is reasonable to use¢ the description
(4.6).

If Jogi (%9, x93, o)l <& and |ao(xY, k3, &0}l <&, then the
corresponding point k, in the (x|, ;) plane is assumed to
be a critical point of the family (2.12), and then it is
necessary to apply at this point an analysis procedure
presented above in Section 2.

Let us describe the technique for the computation of the
coordinates of the vector &, entering the formulas (4.3) and
(4.7), which was applied by us. In accordance with Sec-
tion 2, the vector &, should satisfy the necessary envelope
condition (2.21). Let x,e I and assume that (xy, &,) is a
regular point of the family (2.12). Then at fixed x,, the condi-
tions (2.21) coincide with the necessary conditions for the
extremum of |R(k,, §}|. Since the relationship R(x,, §,)=0
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should be satisfied on the boundary I, the point &, should
be the point of the minimum of the quantity | R{k,, £}| over
£ e 1l1, where the domain 7T is determined in accordance
with (2.7).

In practical computations the coordinates of the vector &,
were calculated with regard for the above considerations in
the following way, The domain /7 was discretized by a
rectangular uniform grid G, having J, nodes along the
coordinate &, [=1, ..., L. After that, &, was determined with
the aid of a uniform search for the minimum of the quantity
| R(xy, &)| over all the nodes §e G,:

o= Arg min |R(x,, §)|. (4.9)
§eGr

The quantities J,, ..., J, involved in the construction of
the grid G were calculated automatically at the stage of
computing the coordinates of the starting point (x$, k3)e I'.
Let ¢ be a desired magnitude of the absolute error in
determining the coordinates (k9, x2). Suppose that
J, = --- =J, =J Denote by x%' the point of the boundary
I" found along some fixed curve L™ intersecting 7. In the
present work the curves L% were chosen to be the polar
beams in the (x, x,) plane. We have taken a small number
of such curves L' k=1,.., K (in the range 4 <K< 12).
Beginning from some starting value J=J, (for example,
Jo=8) we increased its value by 2. If at some J the
inequality

max &N, — (k) eal <8 (4.10)
l€Emg M 1<k K
was satisfied, we assumed that J,= --- =J,=J+2. In

(4.10) (x%"), denotes the value of the mth coordinate x,,,
1 £ m< M, calculated at the point of intersection of the
curve L%, k=1, .., K, with the boundary I".

Since the point (k9, k9)e I, the quantity | R,| should be
small. But if the quantity |u,] is too big, the quantity |5},
where & is computed in accordance with {4.3}, may already
be not small. The size of the quantity #, was controlled in
the following way: at first the quantities ¢, ¢,, and b were
calculated at fixed u, (say, u,=0.04), in accordance with
{4.3). Then the inequality

10.5¢,| > |e2b] (4.11)
was checked. If it was not satisfied, we specified a new value
of the increment u, by the formula (i) pew = 0.8(2¢5) 51 and
repeatedly computed the quantities ¢,, ¢,, and b by for-
mulas (4.3). A similar control of the quantity u, was applied
while using the representation (4.6).

Since the formulas (4.3), (4.4) and (4.7}, (4.8) are
approximate, the coordinates of a new point (x,, k,)e I’
computed by the formulas

.’C] = ;C(l} + ul ]

K2=Kg+u2 (4.12)

are approximate. Since the quantity R, enters directly in the
computational formulas (4.3) and (4.7), it is very important
to ensure the smallness of | Ry| in order that the application
of the formulas (4.3) and (4.7) be justified. In this connec-
tion we applied an algorithm for the refinement of the values
x, and k, found by (4.12). For this purpose we introduced
a new local Cartesian rectangular coordinate system
(O'R,R;) whose origin was placed at the point (x,, .}
determined by (4.12); the O'%, axis was directed along the
tangent to the boundary I at the (k,, x,) peint, and the
O’k axis was directed along a normal to I If (x,, x,) is a
regular point of the curve 7~ and if the increment (u? + u3)*?
is not large, then it is reasonable to suppose that the O'%,
axis will intersect I” at some point (R}, &4). For the calcula-
tion of the coordinate £¥ we applied the bisection process.
For this purpose we constructed the function

1, sign R(K,, &, §) = const,
-1, otherwise,

. YEell,
H(“z)‘{ (4.13)
where R is the resultant and the value £, is assumed to be
fixed (it is computed on the basis of the values x, and «; by
the transformations of coordinate rotation and translation).
The construction (4.13} is based on the fact that the stability
region boundary is an envelope of the family (2.12) and,
hence, there are no curves of the family (2.12) inside the
stability region. Let u_,, = max{|u,|, |u#,|} A search for the
zero £} of the function {4.13) was performed in the intervals

—~ 0254, k € Ry <0250k, k=1, ..

, 16, (4.14)

At first the value k=1 was taken. If it turned out that
sign H(—0.25u,,, ) =sign H(0.25u,,,), then the value k=2
was taken and H was again computed at the ends of an
extended interval, ctc. As a rule, the different signs of the
function H were observed already at the ends of the first of
the intervals (4.14). The bisection process was continued
until a given accuracy of computing the zero &} was
achieved. Let the length of an interval on the %, axis in

which £7 is to be determined be equal to 0.5¢,,. Then it is
easy to find that there are required
L
4] (logz(O.Sumax/s) I1 J,) (4.15)
{=1

computations of the resultant R for obtaining the vaiue &2
with the accuracy &.

Summing up the above material of this section, we
enumerate the numerical stages of the proposed symbolic~
numerical method as the following sequence of steps.

Step 1. Compute coordinates (x?, k%) and the integers
Jvs . Jo by the Routh algorithm [4].
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FIGURE 1

Step 2. Compute &, as a solution of the optimization
problem (4.9).

Step 3. Compute the increments «, and u, either by
formulas (4.3), (4.4) or by formulas (4.7), (4.8) depending
on the inequality (4.2) or {4.5), respectively.

Step 4. Check the satisfaction of the inequality (4.11).1f
it is violated, reduce the increment u, and return to Step 3.

Step 5. Compute the coordinates k,, x, by formulas
(4.12) and go over to the coordinate system O'R, ;.

Step 6. Find the zero 73 of the equation H(k;)=0 by
the bisection process, where H is determined by (4.13).

Step 7. Compute the final coordinates {x;, x,} of the
next point of the 7" boundary on the basis of found values
(El ’ "E.‘? )

Step 8. If the found point (x,, ;) is outside the
quadrant of the (x,, x») plane under consideration, return
to the starting point (x9, x3) found at the Step 1, change the
sign of the increment u, while using formulas (4.3), (4.4) or
the sign of the increment u, while using formulas (4.7), (4.8),
and go over to Step 2.

Step 9. If the found point (x,, x,) remains within the
quadrant under consideration, then this point is taken as an
initial point: that is, it is assumed that k= x|, k3 =k, and
then one returns to Step 2.

The pieces of the I boundary are determined by
the above algorithm independently in each of the four
quadrants of the (x, x,) plane. This is done for the purpose
of the economy of CPU time, because one of the Ok, or Ok,
axes often proves to be a part of the /" boundary, see Figs.
! and 2.

In the cases when it is not known a priori how the
stability region D is located with respect to the found

2 4
& %
AR

3

R
|
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FIGURE 2

boundary I, one can efficiently use the function (4.13).

Indeed, let the function H be positive at one of the ends of
the interval (4.14) obtained at some k. Then the (x, x,).
coordinates corresponding to this end can be stored in two

one-dimensional number arrays. It is obvious that such

points will be located on a stable side of the line /. There-

fore, they can subsequently be used for the dashing of the

subregions in the (x,, ;) plane which correspond to the
stability region of the difference scheme under considera-

tion.

5. EXAMPLES OF PRACTICAL APPLICATION

Let us demonstrate the efficiency of the above proposed
symbolic-numerical method at the examples of three
different schemes approximating scalar equations of the
hyperbolic type.

5.1. The Family of Schemes for One-Dimensional Advection
Equation

Consider the advection equation

dufdt + ¢ dufox, =0, (5.1)

where ¢ = const > 0. Then one of the schemes employing the
MUSCL-type differencing may be writtzn as [26-28]

Wi+ =Y+ (1—a)c(u] —ul_, Vh

Facul ! —ulT ik +e((L+ B)(4M)
x (u;+  — 2u +“;~ O+ el — BY/(4h)}

(5.2)

x(uf —2u;_,+ uj’.'(z):().

Here «, § are nondimensional weight parameters, 0 <a <1,
—1<fB<]. At =1 the scheme (5.2) has an order of
approximation Q(#}) in x,; at B+ the approximation
order in x, is O(k2). Tt follows from (5.2) that the stability
domain [? may be determined in the case under considera-
tion in the plane of nondimensional quantities #, and «,
where x, =ct/h,, k,=p. In Fig. 1 we show the stability
region of the scheme (5.2) at « = 0.5, which was obtained by
the proposed symbolic-numerical method in a rectangular
domain P of the form (2.8) with k™ =0, k7> =4, k7" =0,
kT4 = 2, To check the correctness of the obtained results we
carried out an analytic investigation of the characteristic
polynomial of this scheme which has the form

Ma, +iay)+ (b, + iby) =0, (5.3)
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where

a,=1+oak,(l —cos i),

i=J—1,

a,=oK,8in ¢,

(5.4)
1—
bl=(1—cosd§l)xl[( zﬁ)(l——cosﬁl)—a]—l,

. . A
by=(1—a)k,siné, +x, 5 sin &,(1 —cos &,).
Then the resultant R is expressed by the formula

R=b2+bi—al—aj. (5.5)

At small |x,| we obtain from (5.4} and (5.5} at a=§ the
following formula for R:
R=x,(1—cos &,)*(B— 1)+ O(xi). (5.6)

Let 4, be the root of Eq. (5.3). The the formula (5.5) may be
rewritten in the form

R=(@+ad) (>~ 1) (5.7)
We obtain from the von Neumann conditions {2.6) and
from (5.7) that the inequality R < 0 should be satisfied in the
stability region of scheme (5.2). According to (5.6), this
inequality is satisfied at f <1 in the case of small |x,|. At
k¥, — +0o0 and x=0.5 we obtain from (5.4) at fi= —¢,
where ¢ is a small positive number,

R = x2(ajd)(1 + e)[a*(1 + &) — 247
+2sin? &, +a(l+¢)sin’ &,],

where a =1 —cos ¢,. At £, == we obtain from this expres-
sion that R =4x?(1 + &), £¢>0; that is, we have instability
with regard to {5.7). Thus it follows from the above numeri-
cal and analytic studies that at « = 0.5 the stability region of
scheme (5.2} is represented by a half-strip,

0K, <0, 0<f<1, (5.8)

in the (x, ) plane. The difference scheme (5.2) is a scalar
one-step scheme. Therefore, the stability condition (5.8) is
also a sufficient condition in accordance with the stability
theory presented in [1].

In the case =0 in (5.2) (an explicit scheme) both
numerical computations by the above proposed method
and the analytic studies show that the scheme is unstable.

5.2. Monocyclic MacCormack Schemes

The MacCormack scheme [29-31] was used especially
widely in the 1970s [31]. At present it is also used in com-

putations of applied problems, see, for example, [32,33]
among the recent works. However, MacCormack scheme
may be unstable in some flow directions; some of works
where this instability was observed are enumerated in [311}.
In the present paper we present the results of the application
of the above proposed symbolic-numerical method for
the stability investigation of several variants of the
MacCormack scheme as applied to the two-dimensional
advection equation

oufdt + A duféx, + B ou/éx, =0, (5.9)
where A and B arc scalar constants. The most frequently
used variant of the MacCormack scheme is

dy=ul—1d] (Au})—1d}(Bu}), (5.10)
it =Lt + i) — b A (Ady) — 3T AL (Bity), '

i i x
where the differencing operators in x, and x, are determined
by the formulas

A=y j—ughh;

A)ur'j=(u1j—ui—l,j)/h1,

x|

R (5.11})
A,, u:j={ui,j+l_ur'j)/h2;

A u;= (y—u; ;1 Vh,.

It was pointed out in [29] that (5.10) is only one of four
methods of second-order accuracy. Three other variants of
the MacCormack method are obtained, if instead of first
using two forward spatial differences and the two backward
differences, the reverse procedure could be followed, or one
forward and one backward difference could be followed by
the corresponding backward and forward difference, see
also [30]. Below we present these three rematning variants
of the MacCormack scheme by using the operator notations
(5.11):

fy=ug— IA;(AME)— T A-r_z(B“;‘)!

uptt =%[u’;+1},-j)—§t A7 (Af,) — 31 47,(Biy), {5.12)
dy=uy—td, (Aug)—1 4 (Bup),

uitt =Yg+ i) - 3T A7 (Ady) — 37 4L (Biy), {5.13)
dy=ul—td_ (Auj)—t A_:;(Bug),

wit =34 i) — 3t A (Aiy) — T AL (Bity). (5.14)

It is convenient to obtain the stability regions of schemes
(5.10)-(5.14) in the plane of nondimensional complexes k,
and «, defined by formulas

K= Ar/hl s

K, = Bt/h,. (5.15)
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The characteristic polynomial of d.s. (5.10} has the form
(2.5) with N=1, where

ag(k, E)=1,  a (k&) =b,(x, &)+ iby(k, &),

and

bk, &)= —1+kj(1—cos &)+ k(1 —cos &)
+rK3[(1—cos &)1 —cos &,) +sin &, sin &,];

bk, E)=x,sin &, +x,5in &,. (5.16)

It was shown in [20] with the aid of the catastrophe theory
and with the use of the expressions (5.16) that the stability
region of scheme (5.10) is determined by the inequalities

FAESINESR K k220 (5.17)
Now consider the characteristic polynomial of scheme
(5.12) in order to analyze the stability of this scheme, In this
case N=1in (2.5)and

aolk, 5)=1,  a,(x,E}=b,(x, §) + ibs(, &),

where

bk, &)= — 1 +«3(1 —cos &} + k2(1 —cos &,)
+x,x,[sin &, sin &, — (1 —cos &)1 —cos &,)],

ba(k, &) =K, sin §, + K, sin ¢, (5.18)

To complete the analysis it is sufficient to compare the for-
mulas (5.18) and (5.16). Indeed, it is easy to see that after a
change of variables,

Ki=—k;, {\=2m—{y,
fl € [01 27[], C"l € [Oa 27{]5
K'2=K2,. éi’_=62,

the resultant of scheme (5.12) expressed by the formula R =
b7+ b3—1 completely coincides with the resultant for
scheme (5.10). Consequently the stability region of this
scheme has in the (x}, k5) plane the same form as in the case
of scheme (5.10). Returning to the original variables x, and
K4, we obtain the stability region of scheme (5.12):

I |+ |kah 1, Kk, s0. (5.19)
In Fig. 2 we show the stability regions of schemes (5.10) and
(5.12) obtained by the above symbolic-numerical method.
In formulas (4.3) and (44) we have taken the value
|u,] =0.03, and in formulas (4.7), (4.8), the value |u,| = 0.03.
It follows from Fig.2 that the numerically determined

stability regions coincide with the regicns obtained with the
aid of an analytic study in [20] and described by mathe-
matical inequalities (5.17) and (5.19).

We have also compared the computational efficiency of
the proposed symbolic—numerical method with the sym-
bolic-numerical method of the work [9] which was based
on the modified Routh algorithm. In this comparison we did
not take into account the machine time needed in both of
the methods for an automatic generation of the necessary
FORTRAN subroutines with the aid of the REDUCE
system. This is related to the fact that this machine time is
usually small in comparison with the machine time spent at
the numerical stages of the compared methods. This com-
parison showed that the above proposed approach requires,
for the numerical determination of the coordinates (x,, «,)
of one point of the boundary I, the machine time which is
about a factor of 2.2 smaller than in the case of the applica-
tion of the Routh algorithm variant from [9].

It is convenient for the following to use the operator nota-
tions for schemes {5.10), (5.12)-(5.14):

u"t!= L, u" scheme (5.10)
u"t'=L,u" scheme (5.12)
u"t!=L,u", scheme (5.13)
w" = L,u", scheme (5.14).

It is easy to show that at constant coefficients 4 and B,
L,=L, and I,=L,. Consequently, the above presented
results of the analyses of schemes (5.10) and (5.12) are
applicable to schemes (5.13) and (5.14), respectively.

The stencil of the first equation of scheme (5.10) consists
of three points at the nth level and of one point at the
(n+1)th level Since ail the MacCormack schemes
considered here are explicit, they are characterized by the
presence of only one point in the stencil at the (n+ 1)th
level. This point is always located over the node (i, j, n} in
the (x,, x,, t) space. As we will see in the following, the dis-
position of the peints of stencils for the schemes (5.10) and
(5.12}) at the nth level is different. In this connection the set
of the stencil points lying in the plane ¢ = nt will be called
the stencil of the nth level. Imposing the (i, f) point of the
stencil of Fig, 3a on the points of the stencil of Fig. 3b, it is
easy to obtain the stencil of the nth level for the scheme
(5.10). We proceed in a similar way in the case of scheme
(5.12). In Fig. 4 we present the stencils of the nth level for

1

a b - c d

j+1*
|
i & -e

I i+1

FIGURE 3
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schemes (5.10) and (5.12). We can see that these stencils
include seven points and are nonsymmetric with respect to
the point (i, j).

It follows from incqualities (5.17) and (5.19) that in the
case of using the composite difference scheme of the form

Liu" K K, 20
n41 1 L] 12 =
= 5.20
" {Lzu”, K Ky <0, ( )
the computations should be stable, provided that
|+ e < 1 (5.21)

If the coefficients 4 and B in (5.9) are variable and can
change their sign at some (x,, x,, ¢) points with increasing
7, then the stencil of the nth level, being symmetric with
respect to the node (i, f), is obtained in the case of the
application of the composite scheme (5.20) (see Fig. 4c).

Note that the difference schemes considered in this
section are scalar two-level difference schemes. Therefore,
the stability conditions obtained above for these schemes
are not only necessary, but also they are the sufficient
stability conditions [1].

5.3. Two-Cycle MacCormack Scheme

It was proposed in [29] to appiy the four methods (5.10),
(5.12)-(5.14) in sequence cyclically with the purpose of
reducing the amplification error of the scheme when going
from one time level to the next time level. Thus it was
proposed in [29] to obtain the solution «"** as a result of
the execution of the operator sequence

1
un+ =Llun’ un+2=L2un+l’

u"+3=L3u"”, urt+4=L4un+3_ (522)
We obtain the following formula from (5.22):
Wt =L,LyL,Lu" (5.23)

As was pointed out above, L, =L, and L, = L, in the case
of constant coefficients 4 and B. Therefore, in this case the

application of the sequence (5.21) is equivalent to two

sequential applications of the two-cycle scheme

wri=L,Lu" (5.24)
Obtaining an explicit expression for the right-hand side of
Eq. (5.24) by hand proves to be rather a laborious task. We
have solved this problem with the aid of a small program
written in the REDUCE system. In Fig. 5 we show the sten-
cil of the nth level of scheme (5.24). This stencil includes 21
points and is easily constructed by a superposition of the
stencil of Fig. 4a on the points of the stencil of Fig. 4b. It
may be seen that the stencil of the nth level of scheme (5.24)
is symmetric with respect to the (4, /) node.

It turned out in the result of the calculation of the
resultant by the formuta (2.11) in a symbolic form that
N =28 for formula (3.1). Since a small personal computer
was used by us for symbolic computations, we faced the
problem of memory shortage while calculating the symbolic
expressions «,_; ; entering (3.1). In this connection we
had to modify the algorithm. We used instead of (3.1} the
formulas

R(x{+up, 15, 8)= ¥ d{V(x}, k5, §)uf,  (5.25)

i=0

R(Kla Kg+u2! é)= Z dEZ)(Kla Kgs g) u;..'

i=0

(5.26)

Further, we considered by analogy with (4.2) and (4.5) the
cases

|d\D(?, 13, 8ol Z 1 P(kD, &5, Boll- (5.27)

If |[d{" = |d{?|, we substituted the right-hand side of for-
mula (4.1) instead of «, into the right-hand side of (5.24).
Neglecting then in (5.24) the terms O(u%), k > 3, we obtain
the following equation for determining ¢,, ¢, b:

diP(kY, kS + 1y, Eo) + Ak, kS + 1, Eole 1+ 05 17)
+dV(kS, K+ 1y, EMe t+ ) =b+ 1.

j+2
J+1O—-—¢-— -0
i O-- -0
-1 O-- -O--0
j-2

f=2 i—1 i ix) i+2

FIGURE 5
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From this we find with an error O(+?) the following expres-
sions for the constants ¢, ¢, b:

b=d", ¢, = l/dt", c,=—crdi”. (5.28)
From the requirement that b+ =0, we find t= —5b, and
then u,(u;; ¢, &,) is computed by formuia (4.4). The case
|d'P| < |d{?| is considered in a similar way.

Note that the two-cycle MacCormack scheme (5.24) is a
three-level difference scheme. Therefore, the stability condi-
tion for this scheme which can be obtained with the aid of
the von Neumann stability analysis will be also a sufficient
stability condition if the amplification matrix G is normal
[1], that is

GG* =G*G. (5.29)
It is easy to show that the condition (5.29) is not satisfied in
the case of scheme (5.24). Let us indeed introduce an
auxiliary dependent variable " = 4" *!. Then we can rewrite
scheme (5.24) in the form of the two-level scheme,

Un+l — SU”,

where

0 1
S= .
(Lle 0)

Performing the Fourier transform we obtain that the
amplification matrix G has the form

0 1
Gz(a+ib 0)’

where a + ib is the Fourier symbol of the operator L,L,,
and a and b are real-valued functions of k and &. It is easy
to find that

10 a+b 0
*= * =
GG (0 a2+b2), G*G ( o 1).

It may be seen from here that condition (5.29) is not
satisfied inside the stability region. In this connection we
will call the region in which the von Neumann necessary
stability conditions (2.6) are satisfied, the NSC region
{necessary stability condition region).

In Fig. 6 we present the NSC region of scheme (5.24)
obtained by the above-described modified symbolic-
numerical method: |u,| = 0.04 in formula {5.26), ¢ =0.01 in
the bisection process described in Section 4 and employing
the function (4.13). It may be seen that the NSC region has
no symmetry properties, although the stencil of the nth level

(see Fig. 5) is symmetric with respect to the (7, j) point. It
appears that the asymmetry of the NSC region is related to
a possible asymmetry of the expressions for coefficients
affecting 21 grid values u}, entering the difference equation
(5.24).

Although the NSC region of the scheme under considera-
tion is asymmetric, its boundary I cuts equal segments on
the x, and x, axes. The length of these segments may easily
be found analytically by using the expressions for the coef-
ficients of the characteristic polynomial (2.5) which have
been obtained with the aid of the REDUCE system. We do
not present them here because of their bulky form and
consider a particular case when x,=0, k,#0 in these
coefficients; that is we seek the coordinate &, of the point of
intersection of the boundary I” with the Ok, axis,

It was found from the numerical computations by the
proposed symbolic-numerical method that the condition
for an envelope (2.21) is satisfied near the Ox, axis at
&, = &, = . Substituting these values into the characteristic
polynomial coefficients and assuming also that x, =0, we
arrive at the following characteristic equation;

447 —16k] +4x7—2=0.

From the requirement that |A| < 1 we obtain the inequality

where y = k1. This inequality is easily solved and it is found
that the inequality y <1 should be satisfied. Thus the
boundary I intersects the Ox, axis at points with the
abscissas k, = + 1/\/_= +0.70710678 .- . In computa-
tions to a given accuracy & = 102 we obtained the following
values of the abscissa k| by the proposed symbolic—numeri-
cal method at the points of intersection of the line 7" with the

Lol
SIK

FIGURE 6



STABILITY AND CATASTROPHE THEORY 37

Ok, axis: k= —0.7070193; k, =0.7075254. It can also be
seen in Fig. 6 that the slope of the curve I' changes
continuously when passing from one guadrant to another
quadrant, although the computations on the determination
of I' in each quadrant were performed independently. This
can also serve as evidence of the correctness of the result
obtained.

An approximate von Neumann analysis of scheme (5.24)
was carried out in [34], see also [35]. The following condi-
tion for satisfaction of the von Neumann criterion was
obtained in [34,35] by making a few estimates of the
amplification factor of the scheme (in particular, with the
aid of Schwarz’s inequality):

K421+ 923/ /222012132034, (5.30
1 2

Thus the I boundary is in accordance with (5.30) a circle of
the radius r = (3/,/2 — 2)7 = 0.3483107. In Fig. 6 this circle
is plotted by a dashed line. It was stressed in [34, 35] that
the bound (5.30} is far from optimal, because at k, = k; the
estimate

K3+ k2 < 03266

works. In Fig. 6 the two points lying on the bisector k; =&,

and having the polar radius r = ,/0.3266 are marked by the
crosses. It can be seen that these two points already lie
rather close to the boundary computed by our symbolic-
numerical method.

It follows from Fig. 6 that the NSC region of scheme
(5.24) can be fitted analytically by the inequality

(k3 +x2)* < 0/./2. (5.31)

It is easy to choose the safety factor 6 in (5.31) in the way
that all the points of the region (5.31) lie inside the NSC
region of scheme (5.24). For example, the value 8 =0.905
meets this requirement.

In view of the fact that the amplification matrix G of the
difference scheme (5.24) does not meet the normality
requirement (5.29) further investigations are needed for
determination of the sufficient stability conditions of scheme
(5.24). This difficult problem goes beyond the scope of the
present paper, because we would like to show here a
possibility of automation of the von Neumann stability
analysis of difference initial-value problems with the aid of
the algebra of the resultants, the catastrophe theory, and
symbolic computations.

When numerically solving a specific problem with the aid
of the two-cycle MacCormack scheme (5.24) one can use
the trial-and-error procedure to find the actual stability
region. For this purpose one can try the values of & in (5.31)

in the range 0 < # < 0.905. For the given value of ¢ the step
7 can be computed with regard to (5.15) by the formula

T=0/{2[(A/h:)* + (B/h,)* 1}

CONCLUSION

The above-presented results show that the proposed
symbolic-numerical method is an efficient means for
determining the necessary (and, in some cases, sufficicnt)
stability conditions of difference schemes. Although we have
presented in this work a symbolic-numerical realization of
the method only for determining the regular points of the
boundary I as obtained on the basis of the von Neumann
analysis, nevertheless this method gives an opportunity to
correctly describe all the singularities of this boundary I, It
is easy to see that a symbolic-numeric realization of the
transformation (2.17) may be constructed in a similar way
for the case k = 1. This will enable us to carry out a numeri-
cal computation of singular points of a boundary and to
automate completely a procedure for determining at least
the necessary stability conditions of a difference scheme.

As regards a similar computer-aided automation of
obtaining the sufficient stability conditions of difference
initial-value problems and difference initial- and boundary-
value problems, the available GKS theory [18, 14] men-
tioned in the Introduction strongly resists such automation
in the case of several spatial dimensions. Therefore, the
development of alternative well-formalizable mathematical
procedures for such analyses is of present interest. This
work is now in progress (see, in particular, our recent paper

[36]).
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